Ergodicity of stochastic Cahn-Hilliard equations with logarithmic potentials driven by degenerate or nondegenerate noises

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error control for the approximation of Allen-Cahn and Cahn-Hilliard equations with a logarithmic potential

A fully computable upper bound for the finite element approximation error of Allen– Cahn and Cahn–Hilliard equations with logarithmic potentials is derived. Numerical experiments show that for the sharp interface limit this bound is robust past topological changes. Modifications of the abstract results to derive quasi-optimal error estimates in different norms for lowest order finite element me...

متن کامل

Exponential mixing of the 3D stochastic Navier-Stokes equations driven by mildly degenerate noises

We prove the strong Feller property and exponential mixing for 3D stochastic Navier-Stokes equation driven by mildly degenerate noises (i.e. all but finitely many Fourier modes are forced) via Kolmogorov equation approach.

متن کامل

Ergodicity of the 3d Stochastic Navier-stokes Equations Driven by Mildly Degenerate Noise

We prove that the any Markov solution to the 3D stochastic Navier-Stokes equations driven by a mildly degenerate noise (i. e. all but finitely many Fourier modes are forced) is uniquely ergodic. This follows by proving strong Feller regularity and irreducibility.

متن کامل

Ergodicity of the 3d Stochastic Navier-stokes Equations Driven by Mildly Degenerate Noises:galerkin Approximation Approach

We prove the strong Feller property and ergodicity for 3D stochastic Navier-Stokes equation driven by mildly degenerate noises (i.e. all but finitely many Fourier modes are forced) via Galerkin approximation approach.

متن کامل

Ergodicity of Stochastic Differential Equations Driven by Fractional Brownian Motion

We study the ergodic properties of finite-dimensional systems of SDEs driven by non-degenerate additive fractional Brownian motion with arbitrary Hurst parameter H ∈ (0, 1). A general framework is constructed to make precise the notions of “invariant measure” and “stationary state” for such a system. We then prove under rather weak dissipativity conditions that such an SDE possesses a unique st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2020

ISSN: 0022-0396

DOI: 10.1016/j.jde.2020.04.047